Question			Expected Answers	Marks	Additional Guidance
1	(a)	(i)	the energy required to remove one electron \checkmark from each atom in one mole \checkmark of gaseous atoms \checkmark	3	ALLOW 3 marks for: the energy required to remove one mole of electrons \checkmark from one mole of atoms \checkmark atoms in the gaseous state \checkmark If no definition, ALLOW one mark for the equation below, including state symbols. $\mathrm{X}(\mathrm{~g}) \rightarrow \mathrm{X}^{+}(\mathrm{g})+\mathrm{e}^{-} / \mathrm{X}(\mathrm{~g})-\mathrm{e}^{-} \rightarrow \mathrm{X}^{+}(\mathrm{g})$ ALLOW e for electron IGNORE state symbol for electron
	(b)	(i)	outer electrons closer to nucleus OR radii decreases nuclear charge increases OR protons increase \checkmark electrons added to the same shell OR screening OR shielding remains the same	3	IGNORE 'atomic number increases' IGNORE 'nucleus gets bigger' 'charge increases' is not sufficient ALLOW 'effective nuclear charge increases' OR 'shielded nuclear charge increases' ALLOW shielding is similar
		(ii)	atomic radii increase OR there are more shells \checkmark there is more shielding OR more screening	3	ALLOW electrons in higher energy level ALLOW electrons are further from the nucleus DO NOT ALLOW more orbitals OR more sub-shells DO NOT ALLOW different shell or new shell There must be a clear comparison: e.g. 'more shielding', 'increased shielding'. i.e. DO NOT ALLOW just 'shielding'. ALLOW 'more electron repulsion from inner shells'

Question		Expected Answers	Marks	Additional Guidance
		the nuclear attraction decreases OR Increased shielding / distance outweigh the increased nuclear charge \checkmark		Nuclear OR proton(s) OR nucleus spelt correctly ONCE ALLOW 'nuclear pull' IGNORE any reference to 'effective nuclear charge'
(c)	(i)	$\mathrm{O}^{+}(\mathrm{g}) \longrightarrow \mathrm{O}^{2+}(\mathrm{g})+\mathrm{e}^{-} \checkmark$	1	answer must have state symbols ALLOW e for electron ALLOW $\mathrm{O}^{+}(\mathrm{g})-\mathrm{e}^{-} \rightarrow \mathrm{O}^{2+}(\mathrm{g})$ DO NOT ALLOW $\mathrm{O}^{+}(\mathrm{g})+\mathrm{e}^{-} \longrightarrow \mathrm{O}^{2+}(\mathrm{g})+2 \mathrm{e}^{-}$ IGNORE state symbol for electron
	(ii)	the O^{+}ion, is smaller than the O atom OR the electron repulsion/shielding is smaller OR the proton : electron ratio in the $2+$ ion is greater than in the $1+$ ion \checkmark	1	ALLOW the outer electrons in an O^{+}ion are closer to the nucleus than an O atom DO NOT ALLOW 'removed from next shell down'
		Total	11	

Question			Expected Answers	Marks	Additional Guidance
2	(a)	(i)	number of protons (in the nucleus) \checkmark	1	ALLOW proton number ALLOW number of protons in an atom IGNORE reference to electrons
		(ii)	$\left(1 s^{2}\right) 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{2} 4 s^{2}$	1	ALLOW $1 s^{2}$ written twice ALLOW subscripts ALLOW $4 \mathrm{~s}^{2}$ before $3 \mathrm{~d}^{2+}$
		(iii)	$\mathrm{Mn} /$ manganese and d \checkmark	1	ALLOW D
	(b)	(i)	Shape of water with at least one H with $\delta+$ and at least one O with $\delta-$ H -bond between H in one water molecule and a lone pair of an O in another water molecule \checkmark hydrogen bond labelled OR $\mathrm{H}_{2} \mathrm{O}$ has hydrogen bonding \checkmark	3	all marks can be awarded from a labelled diagram If HO_{2} shown then DO NOT ALLOW 1st mark Dipole could be described in words so it does not need to be part of diagram. At least one hydrogen bond must clearly hit a lone pair Lone pair interaction could be described in words so it does not need to be part of diagram. DO NOT ALLOW hydrogen bonding if described in context of intramolecular bonding, ie
		(ii)	no hydrogen bonding OR weaker intermolecular forces	1	DO NOT ALLOW 'weaker'/ 'weak' hydrogen bonding ALLOW weaker van der Waals' forces ALLOW weaker dipole-dipole interactions DO NOT ALLOW 'weak intermolecular forces' (ie comparison essential here) DO NOT ALLOW 'no intermolecular forces'

Question		Expected Answers	Marks	Additional Guidance		
(c)		$\begin{array}{l}\text { van der Waals' forces OR induced dipole interactions } \checkmark \\ \text { number of electrons increases } \checkmark\end{array}$	$\mathbf{3}$	$\begin{array}{l}\text { electron(s) must be seen and spelt correctly ONCE } \\ \text { ALLOW number of electron shells increases }\end{array}$		
ALLOW iodine has most electrons						
ALLOW chlorine has the least electrons					$]$	(d)
:---						

PhysicsAndMathsTutor.com

Question		er	Marks	Guidance
(d)	(From F to Ne Nuclear charge mark: Ne has (one) more proton OR Nuclear charge increases Same shell or energy level mark: (Outermost) electrons are in the same shell OR energy level OR (Outermost) electrons experience the same shielding \checkmark Nuclear attraction mark: Greater nuclear attraction (on outermost electrons) OR Outer electrons are attracted more strongly (to the nucleus) \checkmark	3	Use annotations with ticks, crosses, ECF etc for this part ALLOW proton number increases but IGNORE atomic number increases IGNORE nucleus gets bigger IGNORE 'charge increases' ie must be nuclear charge IGNORE 'effective nuclear charge increases' ALLOW sub-shell for shell but IGNORE orbitals ALLOW shielding is similar ALLOW screening for shielding IGNORE Atomic radius decreases (because given in question) OR outermost electrons are closer DO NOT ALLOW 'distance is the same' for second mark ALLOW greater nuclear pull for greater nuclear attraction DO NOT ALLOW 'greater nuclear charge' instead of 'greater nuclear attraction' for the third mark IGNORE 'pulled closer' for 'pulled more strongly'
	(ii)	From Ne to Na Extra shell or energy level mark: Na has (one) more shell(s) OR energy level \checkmark Shielding mark: (Outermost) electron experiences greater shielding \checkmark Nuclear attraction mark: Less nuclear attraction (on outermost electrons) OR Outer electrons are attracted less strongly (to nucleus) \checkmark	3	Use annotations with ticks, crosses, ECF etc for this part ALLOW 'next' shell OR 'new' shell ALLOW (outermost) electrons in a higher energy level ALLOW outermost electrons OR shell further from nucleus IGNORE Atomic radius increases (because given in question) DO NOT ALLOW orbitals OR sub-shells ALLOW screening for shielding ALLOW more electron repulsion from inner shells ALLOW 'less nuclear pull' for 'less nuclear attraction' DO NOT ALLOW 'less nuclear charge' for 'less nuclear attraction' for third mark. There must be a clear comparison
		Total	13	

Question			Answer	Mark	Guidance
4	(a)	(i)	Creating the dipole mark uneven distribution of electrons Type of dipole mark creates an instantaneous dipole OR temporary dipole \checkmark Induction of a second dipole mark causes induced dipole(s) in neighbouring molecules \checkmark	3	Use annotations with ticks, crosses ECF etc. for this part ALLOW movement of electrons ALLOW changing electron density ALLOW 'transient', ‘oscillating', ‘momentary', 'changing' ALLOW 'induces a dipole in neighbouring molecules' ALLOW 'causes a resultant dipole in neighbouring molecules' ALLOW 'atoms' for 'molecules'
		(ii)	boiling points increase down the group greater number of electrons OR stronger intermolecular forces OR stronger van der Waals' forces \checkmark more energy needed to break intermolecular OR van der Waals' forces \checkmark	3	Use annotations with ticks, crosses ECF etc. for this part ALLOW Bpt of iodine is highest OR Bpt of chlorine is lowest ALLOW Cl for chlorine etc. For 'down the group' ALLOW 'as molecules get bigger' ALLOW number of electron shells increases IGNORE 'more shells' (if no reference to electrons) ALLOW 'more' for 'stronger' ALLOW iodine has most electrons ALLOW chlorine has fewest electrons DO NOT ALLOW any implication that the attraction is between atoms not molecules for third mark
	(b)		Same number of outer(most) electrons OR same outer(most) electron structure \checkmark	1	ALLOW same number of electrons in outer shell ALLOW It has seven outer electrons IGNORE same group DO NOT ALLOW 'same number of electrons'

Question		er	Mark	Guidance
(c)	(ii)	Bromine is toxic \checkmark		$\begin{array}{l}\text { ALLOW cyclohexane is toxic } \\ \text { ALLOW bromine irritates the lungs } \\ \text { IO NOT ALLOW } \mathrm{Cl}_{2} \text { is toxic }\end{array}$
IGNORE 'strong smelling'				
IGNORE 'halogens' are toxic				

