Q	uesti	on	Expected Answers	Marks	Additional Guidance
1	(a)	(i)	the energy required to remove one electron ✓ from each atom in one mole ✓ of gaseous atoms ✓	3	ALLOW 3 marks for: the energy required to remove one mole of electrons \checkmark from one mole of atoms \checkmark atoms in the gaseous state \checkmark If no definition, ALLOW one mark for the equation below, including state symbols. $X(g) \rightarrow X^+(g) + e^- / X(g) - e^- \rightarrow X^+(g)$ ALLOW e for electron IGNORE state symbol for electron
	(b)	(i)	outer electrons closer to nucleus OR radii decreases ✓ nuclear charge increases OR protons increase ✓ electrons added to the same shell	3	IGNORE 'atomic number increases' IGNORE 'nucleus gets bigger' 'charge increases' is not sufficient ALLOW 'effective nuclear charge increases' OR 'shielded nuclear charge increases'
			OR screening OR shielding remains the same ✓		ALLOW shielding is similar
			atomic radii increase OR there are more shells ✓		ALLOW electrons in higher energy level ALLOW electrons are further from the nucleus DO NOT ALLOW more orbitals OR more sub-shells DO NOT ALLOW different shell or new shell
		(ii)	there is more shielding OR more screening ✓	3	There must be a clear comparison: <i>e.g.</i> more shielding', increased shielding'. <i>i.e.</i> DO NOT ALLOW just 'shielding'. ALLOW ' more electron repulsion from inner shells'

Ques	tion	Expected Answers	Marks	Additional Guidance
		the nuclear attraction decreases OR Increased shielding / distance outweigh the increased nuclear charge ✓		Nuclear OR proton(s) OR nucleus spelt correctly ONCE ALLOW 'nuclear pull' IGNORE any reference to 'effective nuclear charge'
(c) (i)	$O^+(g) \longrightarrow O^{2+}(g) + e^- \checkmark$	1	answer must have state symbols ALLOW e for electron ALLOW $O^+(g) - e^- \rightarrow O^{2+}(g)$ DO NOT ALLOW $O^+(g) + e^- \longrightarrow O^{2+}(g) + 2e^-$ IGNORE state symbol for electron
	(ii)	the O ⁺ ion, is smaller than the O atom OR the electron repulsion/shielding is smaller OR the proton : electron ratio in the 2+ ion is greater than in the 1+ ion \checkmark	1	 ALLOW the outer electrons in an O⁺ ion are closer to the nucleus than an O atom DO NOT ALLOW 'removed from next shell down'
		Total	11	

C	Questi	ion	Expected Answers	Marks	Additional Guidance
2	(a)	(i)) number of protons (in the nucleus) ✓	1	ALLOW proton number ALLOW number of protons in an atom IGNORE reference to electrons
		(ii)	(1s ²)2s ² 2p ⁶ 3s ² 3p ⁶ 3d ² 4s ² ✓	1	ALLOW 1s ² written twice ALLOW subscripts ALLOW 4s ² before 3d ²⁺
		(iii)	Mn / manganese and d ✓	1	ALLOW D
	(b)	(i)	Hydrogen bond $\delta_{H} = 0$ $H_{H} = 0$ H	3	 all marks can be awarded from a labelled diagram If HO₂ shown then DO NOT ALLOW 1st mark Dipole could be described in words so it does not need to be part of diagram. At least one hydrogen bond must clearly hit a lone pair Lone pair interaction could be described in words so it does not need to be part of diagram. DO NOT ALLOW hydrogen bonding if described in context
		(ii)	no hydrogen bonding OR weaker intermolecular forces ✓	1	of intramolecular bonding, <i>ie</i> H DO NOT ALLOW 'weaker'/ 'weak' hydrogen bonding ALLOW weaker van der Waals' forces ALLOW weaker dipole-dipole interactions DO NOT ALLOW 'weak intermolecular forces' (ie comparison essential here) DO NOT ALLOW 'no intermolecular forces'

Questi	ion	Expected Answers	Marks	Additional Guidance
(c)		van der Waals' forces OR induced dipole interactions ✓ number of electrons increases ✓	3	electron(s) must be seen and spelt correctly ONCE ALLOW number of electron shells increases ALLOW iodine has most electrons ALLOW chlorine has the least electrons
		Down the group, intermolecular forces / van der Waals' forces increase OR Down the group, more energy needed to break intermolecular / van der Waals' forces ✓		For 'Down the group' ALLOW 'Increase in boiling points' or 'Molecules get bigger'
(d)	(i)	goes brown ✓	1	ALLOW yellow OR orange OR any shade of yellow, orange and brown, <i>e.g.</i> reddish-brown IGNORE precipitate
	(ii)	iodine and (potassium) chloride ✓	2	DO NOT ALLOW formulae (<i>i.e.</i> names essential)
		Cl_2 + $2l^- \longrightarrow l_2$ + $2Cl^- \checkmark$		ALLOW any correct multiple including fractions IGNORE state symbols
	(iii)	chlorine / Cl₂ is more reactive (than iodine) OR chlorine / Cl₂ is a more powerful oxidising agent ✓	1	 ALLOW chlorine is better at electron capture OR chlorine attracts electrons more ALLOW iodine is less reactive (than chlorine) ALLOW iodide (ion) / I⁻ is a stronger reducing agent
				DO NOT ALLOW CI is more reactive DO NOT ALLOW explanation in terms of displacement DO NOT ALLOW chlorine is more electronegative
	(iv)	goes purple / violet / lilac / pink ✓	1	ALLOW pink OR any combination of purple, violet, lilac and pink
		Total	15	

Q	Question		er	Marks	Guidance
3	(a)	(i)	A region (within an atom) that can hold (up to) two electrons ✓ (with opposite spin)	1	 ALLOW 'can be found' OR 'contains' OR 'has' etc. for 'can hold' ALLOW 'area' OR 'volume' OR 'space' OR 'somewhere' etc. for region DO NOT ALLOW path of an electron IGNORE references to 'orbitals being parts of sub-shells'
		(ii)	1s ² 2s ² 2p ⁶ 3s ² 3p ⁴ ✓	1	ALLOW subscripts, capitals IGNORE 1s ² seen twice
		(iii)	7 ✓	1	
	(b)		(The amount of substance which contains) as many particles as there are carbon atoms in 12g of ¹² C (atoms) ✓	1	ALLOW 6.02×10^{23} particles (atoms, molecules, ions etc.)OR N_A particles OR L particlesALLOW 'Avogadro number' in place of N_A particlesALLOW 'Number of atoms in 12 g of 12 C'DO NOT ALLOW 'the number of particles in 12g of 12 C atoms'
	(c)		Energy (needed) to remove an electron ✓ from each atom in one mole ✓ of gaseous atoms ✓	3	ALLOW 'Energy to remove one mole of electrons from one mole of gaseous atoms' for three marks IGNORE 'element' ALLOW 'Energy needed to remove an electron from one mole of gaseous atoms (to form one mole of gaseous 1+ ions') for two marks For third mark: ALLOW ECF if wrong 'particle' is used in second marking point but is described as being gaseous eg 'molecule' instead of 'atom' If no definition, ALLOW one mark for X(g) → X ⁺ (g) + e ⁻ OR X(g) - e ⁻ → X ⁺ (g) ALLOW e ⁻ for electron IGNORE state symbols on e

Q	uesti	on	er	Marks	Guidance
	(d)	(From F to Ne	3	Use annotations with ticks, crosses, ECF etc for this part
			Nuclear charge mark:		
			Ne has (one) more proton		ALLOW proton number increases but IGNORE atomic
			OR		number increases
			Nuclear charge increases ✓		IGNORE nucleus gets bigger
					IGNORE 'charge increases' ie must be nuclear charge
			Same shell or energy level mark:		IGNORE 'effective nuclear charge increases'
			(Outermost) electrons are in the same shell OR energy		
			level		ALLOW sub-shell for shell but IGNORE orbitals
			OR		
			(Outermost) electrons experience the same shielding \checkmark		ALLOW shielding is similar
					ALLOW screening for shielding
					IGNORE Atomic radius decreases (because given in
					question) OR outermost electrons are closer
					DO NOT ALLOW 'distance is the same' for second mark
			Nuclear attraction mark:		
			Greater nuclear attraction (on outermost electrons)		ALLOW greater nuclear pull for greater nuclear attraction
			OR		DO NOT ALLOW 'greater nuclear charge' instead of 'greater
			Outer electrons are attracted more strongly (to the		nuclear attraction' for the third mark
			nucleus) 🗸		IGNORE 'pulled closer' for 'pulled more strongly'
		(ii)	From Ne to Na	3	Use annotations with ticks, crosses, ECF etc for this part
			Extra shell or energy level mark:		ALLOW 'next' shell OR 'new' shell
			Na has (one) more shell(s) OR energy level ✓		ALLOW (outermost) electrons in a higher energy level
					ALLOW outermost electrons OR shell further from nucleus
					IGNORE Atomic radius increases (because given in
					question)
					DO NOT ALLOW orbitals OR sub-shells
			Shielding mark:		
			(Outermost) electron experiences greater shielding ✓		ALLOW screening for shielding
1					ALLOW more electron repulsion from inner shells
			Nuclear attraction mark:		
			Less nuclear attraction (on outermost electrons)		ALLOW 'less nuclear pull' for 'less nuclear attraction'
			OR		DO NOT ALLOW 'less nuclear charge' for 'less nuclear
			Outer electrons are attracted less strongly (to nucleus) ✓		attraction' for third mark. There must be a clear comparison
			Total	13	· · · · ·

Q	uesti	ion	Answer	Mark	Guidance
4	4 (a) (i)		Creating the dipole mark uneven distribution of electrons ✓	3	Use annotations with ticks, crosses ECF etc. for this part ALLOW movement of electrons ALLOW changing electron density
			<i>Type of dipole mark</i> creates an instantaneous dipole OR temporary dipole ✓		ALLOW 'transient', 'oscillating', 'momentary', 'changing'
			<i>Induction of a second dipole mark</i> causes induced dipole(s) in neighbouring molecules ✓		ALLOW 'induces a dipole in neighbouring molecules' ALLOW 'causes a resultant dipole in neighbouring molecules' ALLOW 'atoms' for 'molecules'
		(ii)	boiling points increase down the group \checkmark	3	Use annotations with ticks, crosses ECF etc. for this part ALLOW Bpt of iodine is highest OR Bpt of chlorine is lowest ALLOW CI for chlorine etc. For 'down the group' ALLOW 'as molecules get bigger'
			greater number of electrons OR stronger intermolecular forces OR stronger van der Waals' forces ✓		ALLOW number of electron shells increases IGNORE 'more shells' (if no reference to electrons) ALLOW 'more' for 'stronger' ALLOW iodine has most electrons ALLOW chlorine has fewest electrons
			more energy needed to break intermolecular OR van der Waals' forces ✓		DO NOT ALLOW any implication that the attraction is between atoms not molecules for third mark
	(b)		Same number of outer(most) electrons OR same outer(most) electron structure ✓	1	ALLOW same number of electrons in outer shell ALLOW It has seven outer electrons IGNORE same group DO NOT ALLOW 'same number of electrons'

Question	er	Mark	Guidance
(c) (i)	Colours: (Add Br ₂ to NaCl,) (Cyclohexane layer) turns orange OR yellow \checkmark (Add Br ₂ to Nal,) (Cyclohexane layer) turns purple OR lilac OR violet OR pink OR mauve \checkmark Equation: Br ₂ + 2l ⁻ \Rightarrow l ₂ + 2Br ⁻ \checkmark	6	Use annotations with ticks, crosses ECF etc. for this part ALLOW any combination of these but no others ALLOW any combination of these but no others DO NOT ALLOW 'precipitate' with either colour DO NOT ALLOW equation mark if incorrect equation(s) also seen IGNORE $Br_2 + 2CI^- \Rightarrow Br_2 + 2CI^-$ IGNORE correct non-ionic version of equation IGNORE state symbols
	Reactivity: Reactivity decreases down the group OR Oxidising power decreases down the group ✓ Explanations: Chlorine will gain electron easiest OR form negative ion easiest ✓		ALLOW Chlorine is the most reactive ALLOW Cl for chlorine etc. ALLOW lodine is the least reactive ALLOW chlorine is best at electron capture ALLOW chlorine has 'greatest' electron affinity IGNORE chlorine is most electronegative DO NOT ALLOW explanations in terms of displacement <i>Quality of Written Communication – Electron(s) OR negative spelled</i> <i>correctly at least ONCE for marking point 5</i>
	Because chlorine (atom) is smallest OR Outer(most) shell of chlorine least shielded OR Nuclear attraction on electrons of chlorine is greatest ✓		ALLOW Chlorine atom has fewest shells ALLOW outer(most) shell closest to the nucleus ALLOW Chlorine atom has lowest shielding ORA for marking points 4, 5 and 6

Quest	ion	er		Guidance
(c)	(ii)	Bromine is toxic ✓	1	ALLOW cyclohexane is toxic ALLOW bromine irritates the lungs DO NOT ALLOW Cl ₂ is toxic IGNORE 'strong smelling' IGNORE 'halogens' are toxic
(d)	(i)	$2F_2 + 2H_2O \rightarrow 4HF + O_2 \checkmark$	1	ALLOW correct multiples, including use of ½ O ₂ ALLOW 4FH IGNORE state symbols
	(ii)	Oxygen has been oxidised as (oxidation number has increased from) $O = -2$ to $O = 0 \checkmark$ Fluorine has been reduced as (oxidation number has decreased from) $F = 0$ to $F = -1 \checkmark$	2	IGNORE references to oxygen in any incorrect products DO NOT ALLOW $O_2 = -2 \rightarrow O = 0$ but ALLOW $F_2 = 0 \rightarrow F = -1$ ALLOW 'F is reduced from 0 to -1' regardless of product (or no product) in 5d(i) except ALLOW ECF for $F = -2$ if H_2F is seen ALLOW one mark for $O = -2$ and $O_2 = 0$ AND $F_2 = 0$ and $F = -1$ if no reference OR incorrect reference to oxidation / reduction is seen Look at equation in 5d(i) for oxidation numbers if not seen in 5d(ii) IGNORE reference to electron loss / gain if correct DO NOT ALLOW incorrect reference to electron loss / gain
(e)	(i)	(1s ²) 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰ 4s ² 4p ¹ \checkmark	1	IGNORE 1s ² twice ALLOW 4s ² before 3d ¹⁰ ALLOW '3D'
	(ii)	GaF₃ ✓	1	
		Total	19	